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ABSTRACT 

In this paper, a novel method for estimating 
inertial and stiffness parameters for aircraft 
structures is presented. The method is based on a 
combination of the Finite Element Method (FEM) 
and Artificial Neural Networks (ANNs). ANNs 
are known for their non-linearity and input/output 
mapping features and the proposed procedure 
aims to develop network architecture and training 
data capable of overcoming many of the shortfalls 
associated with previous parameter estimation 
techniques, such as uniqueness of solution and 
inadequate performance in the presence of 
uncertainties.  

The proposed parameter estimation technique 
is used to determine inertial and stiffness 
properties of a linear finite element model 
comprised of planar Hermitian beam elements. It 
achieves this with surprising accuracy. The 
stiffness distribution is estimated from static 
load/deformation considerations, while the 
inertial distribution is estimated from the modal 
characteristics of the model. Finite Element 
Analysis in MATLAB is used to generate the 
training data for the networks, which are 
simulated using its Neural Network Toolbox. 

 
INTRODUCTION 
Preface 

As the demand for aerospace structures with 
greater reliability and efficiency increases, so do 
the levels of complexity and computationally 
demanding analysis required to engineer them. 
Classical techniques consistently fail to have 

adequate robustness and dexterity when adapted 
to modern engineering problems.  There is 
compelling evidence that Soft Computing 
techniques like Artificial Neural Networks 
(ANNs) hold the key to solving traditionally 
awkward engineering problems by basing them 
on novel approaches existing in nature. 
Mathematically speaking, the inverse problem is 
ill conditioned, hence solution uniqueness is not 
guaranteed. It is here that traditional techniques 
begin to falter, and those such as ANNs flourish. 
Since the task of identifying aircraft structural 
parameters is an Inverse Problem, the proposed 
application of ANNs to parameter identification is 
anticipated to be a powerful and useful means of 
addressing the many issues that arise when such a 
taxing task is undertaken. 
 
Literature Review 

Currently, there is little research activity 
involving the application of ANNs to parameter 
identification techniques for aircraft wing 
structures, making the research detailed here truly 
novel. There exists a large research effort into the 
application of single objective [1] and multi-
objective [2] optimisation techniques to the task 
of wing parameter identification, which for the 
most part, are “direct” approaches to the problem, 
however their usefulness has not been discounted. 
The centre of most of the research regarding 
parameter identification for aircraft structures is 
in the area of genetic algorithms [2]. Although 
being based on Frequency Response Functions 
(FRFs), which are not pursued in the method 
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proposed here, this work did prove very useful in 
shedding light as to the major limitations and 
shortfalls associated with both conventional and 
unconventional parameter estimation techniques. 
These were namely the existence and uniqueness 
of a solution and the “curse of dimensionality”.   

A technique being researched increasingly in 
the field of parameter estimation is that of model 
updating, which seeks to marry the fields of ANN 
and the Finite Element Method (FEM) [3]. While 
quite juvenile in its development, it promises to 
be an exceptionally powerful technique for 
aircraft wing modelling and parameter estimation. 
While not directly used in this research task due 
to its high complexity and advanced nature, it 
provides a direction for further research activities.  
There also exists a large body of research 
regarding static and dynamic modelling of 
“equivalent aircraft wing structures”. By either 
employing equivalent beam-rod aircraft wing 
models [4], equivalent plate models [5], or 
equivalent skin models [6], these techniques aim 
solely to replace complex physical aircraft wings 
with simplified and equivalent models that 
accurately mimic the performance of the actual 
physical wings. Most of these studies are rather 
specific and problem dependent in their 
development, and have the main limitation of 
being “direct/conventional” approaches to the 
problem of aircraft wing structural parameter 
identification, which is an approach avoided here. 
It is anticipated that while this body of knowledge 
is not entirely aligned with the proposed research, 
it still provides useful insight into conventional 
parameter estimation techniques. 
 
Background into Neural Networks 

An ANN is an enormously distributed parallel 
processing unit, consisting of simpler individual 
processing units which have inherent tendencies 
to store and retrieve observed knowledge [7]. 
ANNs resemble the human brain in that they 
acquire knowledge and information from their 
environment which is stored within inter-neuron 
connections. 

ANNs derive their problem-solving prowess 
from their massively parallel architecture and 
ability to learn and generalize. They also possess 
input/output mapping capabilities, adaptivity, 
robustness and an ability to cope with non-
linearity. These traits assist ANNs in solving 
complex and large-scale (e.g. inverse) problems 
that are currently unsympathetic to solution.  

The Neural Networks utilized here are 
implemented using the Matlab Neural Network 
Toolbox. The reader is referred to References [7] 
and [8] for further information on Neural 
Networks and their implementation. 
 
PARAMETER ESTIMATION USING ANNs 
Model Development 

In order to apply ANNs to the estimation of 
aircraft structural parameters, it is necessary to 
construct a simplified, but representative model of 
the desired structural component. As this paper 
deals solely with the estimation of inertial (ρA) 
and stiffness (EI) parameters of a cantilevered 
beam, representative of a real aircraft wing, an 
appropriate finite element cantilevered beam 
model was chosen. A schematic of the beam 
model can be seen in Figure 1.  

 
Figure 1.  Cantilevered beam model of a real 

aircraft wing. 

  
Once a suitable model of the wing has been 

constructed and the properties of the model that 
are to be identified established, exactly how these 
properties are to be estimated needs to be 
ascertained. Hence it is also necessary to obtain 
some empirical or numerical data regarding the 
mechanical behaviour of the cantilevered beam, 
which will be used as a gateway for establishing 
the desired inertial and stiffness parameters. This 
is the essence of ANN training. In this paper, two 
sets of simulated numerical data form the basis of 
the training data for the ANNs. The first are 
deformation characteristics of the beam model 
when subjected to a variety of static loads, whilst 
the second is the modal characteristics of the 
beam model from an eigenvalue analysis.   

The manner in which this numerical data is 
used defines the manner in which the estimation 
problem is formulated. The authors have 
highlighted three possible approaches to the 
parameter estimation problem which are depicted 
in Figures 2, 3 and 4. 

EIi, ρAi 

Li 
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Approach 1 involved establishing a single 
ANN which takes natural frequencies as inputs, 
and determines (ρA) and (EI) for each beam 
element in the model. Training data was 
developed by solving the eigenvalue problem for 
models with varying mass and stiffness 
properties. A diagram of this approach is shown 
in Figure 2. 

 
Figure 2. FEM/eigenvalue approach using one 

ANN. 
 

Approach 2 utilised two ANNs; the first takes 
natural frequencies and (EI) as inputs, and outputs 
(ρA), while the second takes natural frequencies 
and (ρA) as inputs to determine (EI). The training 
data was developed in the same manner as for the 
first approach. A diagram of this approach is 
shown in Figure 3. 

 

 
Figure 3. FEM/eigenvalue approach using two 

ANNs. 
 

In Approach 3, (ρA) and (EI) for each 
element in the beam model are estimated using 
two different ANNs using two entirely different 
approaches. The stiffness properties are estimated 
from static load/deformation considerations, 
while the inertial properties are estimated from an 
eigenvalue formulation of the model. Hence two 
sets of training data are simulated, the first by 
using Hooke’s Law to find (EI) from 
load/deformation data, and the next by conducting 
the direct eigenvalue problem for the beam 
model, calculating the natural frequencies of the 
beam from (ρA) and (EI). Upon training, one 
ANN is shown load/deformation data to yield 
elemental stiffnesses, while the other ANN is 
shown the previously calculated (EI) values, as 

well as the natural frequencies of the beam model, 
to yield (ρA).   

Hence the problem reduces to first estimating 
(EI) for each beam element from 
load/deformation data of the beam model, and 
then estimating (ρA) from both the natural 
frequencies of the beam and the previously 
estimated (EI) values. This approach is depicted 
in Figure 4. 
 

Figure 4. Hooke's Law/eigenvalue approach using 
two ANNs. 

 
After considerable investigation into which of 

the three approaches was most feasible for the 
task considered here, it was found that Approach 
3 was the most flexible, more manageable and 
had fewer inherent deficiencies and limitations. 
Approach 1 was found to be the most impractical 
and most difficult to implement. This is mainly 
due to the fact that, no matter how many elements 
were used to model the beam, the resulting 
network was forced to estimate more parameters 
than it was provided with (the size of the output 
vector was always greater than the size of the 
input vector). Such a situation is not at all 
favourable for ANNs.   

Approach 2 attempts to overcome the adverse 
problems associated with Approach 1 by reducing 
the size of the output vector and correspondingly 
increasing the size of the input vector, through the 
use of two ANNs. However this approach 
encounters grand problems of its own, which are 
tied to the nature of eigenvalue problems. The 
natural frequencies of a mechanical system are 
dependent on the mass and stiffness distributions 
of that system, hence the frequencies can be 
thought of as a function of mass and stiffness. In 
Approach 2, it is assumed that either the mass or 
stiffness distribution of the beam is initially 
known. In general, this will not be the case, and it 
imposes severe limitations on the applicability 
and generality of the parameter estimation 
procedure. Thus it was not considered here. 
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Hence Approach 3 is the nominated procedure 
for estimating the inertial and stiffness properties 
of the beam model. Of all the three approaches, it 
is the most physically intuitive method, relying 
heavily on real physical relationships between 
parameters. This is a very important 
consideration, since most techniques used to solve 
inverse problems are very much “black box” 
approaches, with little regard for the underlying 
physical relationships relating system parameters. 
While not entirely “white box” modelling, 
Approach 3 is an example of “grey box” 
modelling. 
 
Training Process 

Once a suitable model of the beam has been 
developed, and an approach to solving the task 
has been decided on, the aspect of simulating 
training data needs to be addressed. Consisting of 
input and output pairs, this data is fed into the 
ANN, which uses it to model the underlying 
relationship between the input and the output. In 
this paper, two sets of training data are needed, 
one for the ANN used to estimate stiffness 
properties, and another set for the ANN used to 
estimate the inertial properties. Means of 
constructing each of these training data sets will 
be discussed separately below. 
 
Generation of Training Data  

The generation of the training data sets for the 
ANNs is quite similar, and only the set used to 
estimate the bending stiffness of the beam model 
will be presented.  This data set is produced by 
solving the Hooke’s law problem for many beam 
models that could be used to represent the real 
structure. (the other is produced by solving many 
eigenvalue problems). The procedure for one such 
beam model is detailed below. 

 
a) Firstly, the bending stiffness (EI) for each 

element used to represent the beam is generated 
using a random number generator. This generator 
produces a number for each (EI) value in the 
interval [0,1], which is then weighted, so that the 
values are representative of a realistic tapered 
cantilever beam (i.e. mass and stiffness properties 
are reduced in span-wise direction from the 
supported end of the beam to the free end). 

b) Similarly, the magnitude of the slope at 
each node, for each beam element is generated 
randomly, and appropriately weighted. Since the 
beam is to be cantilevered, the condition of zero 
slope at one end of the beam is enforced. 

c) By integrating the slope vector, the 
deflection at each node can be found. Similarly 
the condition of zero deflection at one end of the 
beam is enforced. 

d) Next the deflection and slope data are 
assembled into a global deflection vector, which 
will be used during the finite element Hooke’s 
Law formulation. 

e) The elemental stiffness matrices for the 
beam model are calculated using the stiffness and 
geometric data for each element of the beam 
model. These elemental stiffness matrices are 
appropriately assembled into a global stiffness 
matrix, which upon the application of appropriate 
boundary conditions, will be used during the 
finite element Hooke’s Law formulation. 

f) The Hooke’s Law problem is solved, using 
the global stiffness and displacement vectors, to 
calculate the forces and moments at each node in 
the beam. Hence the nodal forces and moments 
for each element in the beam are calculated from 
the global stiffness and deflection matrices (i.e. F 
= Kx). 

g) The force/moment and deflection/slope data 
is assembled into a vector, which will serve as the 
input vector for the ANN during training. The 
output (known during training as the target 
vector), will be the (EI) values for each element 
of the beam model. The numbers within each of 
these vectors are appropriately scaled so that all 
numbers lie within the interval [0,1], needed for 
enhanced ANN training. 

h) The resulting input/output training data 
pairs are saved for future network training. 
 
 
Simulation of Testing Data 

In order to assess the performance of the two 
ANNs at estimating the required structural 
properties for the beam model, testing data is 
needed for the two ANNs. This testing data takes 
exactly the same form as the training data, and is 
simulated in exactly the same fashion as the two 
training data sets, except for one subtle 
difference. The testing data, although resembling 
the training data, should take on slightly different 
values, so as to test if the network can generalize 
sufficiently, and not just memorize the training 
data. Hence the size of the testing data sets are 
much smaller than the training data sets, but must 
fall within the global range that the training data 
encompasses, otherwise the generalizing process 
will be compromised. 
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Network Construction and Simulation 
Upon construction of the two sets of training 

data, the two ANN are constructed and simulated; 
one ANN used to estimate stiffness properties, 
and the other ANN used to estimate the inertial 
properties. Means of constructing each of these 
ANN are discussed below. Since the construction, 
training, testing and simulation of each of the two 
ANN are very similar, each is discussed 
concurrently. 

 
ANN Used to Estimate Stiffness and 
Inertial Properties.  

These networks are constructed, trained, tested 
and simulated, producing the required structural 
properties of the beam model, using the procedure 
detailed below. 

a) Firstly, the relevant training and testing data 
sets are loaded into the working environment. A 
global data set of size 2500 is generated for each 
ANN, which is partitioned into two smaller 
subsets, one for training and one for testing. Each 
training data set contains 2475 unique 
input/output pairs, while each testing set contains 
25 unique input/output pairs, sampled at equally 
spaced intervals from the global data set, which 
are not seen by their relevant ANN. 

Since there are no rigid and well defined 
procedures to adhere to when determining the size 
of the training data required for both learning and 
adequate generalization [7], the optimal size of 
the training data for each ANN was determined 
empirically. This meant that a large portion of 
research involved addressing these issues. It was 
found that a training data size of 2500 was the 
minimum possible for efficient network training 
and adequate generalization (for the most 
optimum network architecture discussed below). 

b) Next the ANN are constructed, by 
specifying the following- 

The architecture of each ANN, hence the 
number of layers and number of neurons in each 
layer. Both ANN contain two hidden layers, and 
along with an input and output layer; have a total 
of four layers. Both ANN contain fifteen neurons 
in the first hidden layer, ten in the second and 
four neurons in the output layer.   

Two hidden layers were chosen since they 
represent the lower limit for the solution of 
inverse problems using ANNs. Since the number 
of neurons in the output layer must be equal to the 
size of the output vector, four neurons were used 
in the output layer. The number of neurons in the 
first and second hidden layers was empirically 

determined, again due to the scarcity of routine 
techniques used for optimal neuron determination. 
After much consideration between learning 
efficiency, network performance and training 
time, for both ANN, the optimum number of 
neurons in the first and second hidden layers was 
found to be 15 and 10 respectively.   

The type of activation function used by each 
neuron, in each layer for each ANN. The neurons 
in each of the hidden layers for both ANN use the 
sigmoid type activation function to accommodate 
non-linearity, while the output neurons use linear 
activation functions so that the ANN outputs can 
take on any real number. 

The training algorithm to be used for each 
ANN, along with its performance function, the 
number of times the training data set is to be 
shown to the ANN (epochs), along with the 
stopping criteria. The ANN used to estimate the 
bending stiffness properties of the beam uses the 
Levenberg-Marquardt training algorithm, which 
is an enhanced quasi-Newton numerical 
optimization training method. The ANN used to 
estimate the mass properties of the beam uses the 
Resilient Back Propagation training algorithm, 
which is an enhanced Steepest Descent training 
method with modest memory requirements. Both 
ANN use the Sum Square Error (SSE) 
performance function to assess network 
performance, with the stopping criteria being the 
zero error condition. The total number of epochs 
for the ANN used to estimate the bending 
stiffness properties of the beam is one hundred, 
while the total number of epochs for the ANN 
used to estimate the mass properties of the beam 
is five thousand. These epoch numbers ensure 
adequate network convergence for both ANNs. 

The Levenberg-Marquardt training algorithm 
was chosen for the ANN used to estimate the 
bending stiffness of the beam since it is accepted 
to be the fastest method for training moderate-
sized feed forward ANNs and has very efficient 
implementation in the MATLAB environment 
[8]. However it does suffer from the burden of 
being very “memory-intensive” if the size of the 
network is sufficiently large, like the case for the 
mass estimation ANN. Due to its much larger 
input vector, the ANN used to estimate the mass 
distribution of the beam required a different 
training algorithm. The Resilient Back 
Propagation training algorithm was found to be 
the quickest and least “memory-intensive” of the 
training algorithms available in MATLAB’s 
Neural Network Toolbox, hence its use in training 
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the ANN used to estimate the mass distribution of 
the beam. While the Resilient Back Propagation 
training algorithm is less “memory-intensive” and 
as fast as the Levenberg-Marquardt training 
algorithm, it requires more epochs (presentation 
of training data samples) to learn the underlying 
relationships within the training data. 

c) The ANNs are then trained accordingly, 
with post training regression analysis carried out 
to assess the performance of training. The results 
of network training for the ANN used to estimate 
the bending stiffness is shown in Figure 5 below. 

 

 
Figure 5.  Evolution of network training/testing 

error for bending stiffness estimation. 
 

With reference to Figure 5, it is evident that 
the network error goal for the ANN was not met. 
However after 100 epochs, it can be seen that the 
network error associated with the ANN has 
converged to a final value, indicating that further 
training will not improve network performance.  
A similar phenomenon occurred for the additional 
ANN employed for inertial property estimation. 

d) The ANN are then presented with the 
testing data sets, and are asked to produce an 
estimate of the stiffness and inertial properties for 
the beam models. Post testing regression analysis 
is carried out to assess the ANN’s ability to 
generalize. The results of post testing regression 
analyses for the ANN used for bending stiffness 
estimation is shown in Figure 6. 

 

 
Figure 6. Network post testing regression 

analysis for bending stiffness estimation. 

Figure 6 illustrates the ability of the ANN to 
estimate the stiffness properties of each element 
for each beam model used to test the network. 
This ANN can very accurately estimate the 
stiffness properties of each element for beam 
models it has not seen before. This is reinforced 
upon observation of the correlation co-efficients 
(R-values) for each element in both the figure, 
which are all very close to unity, indicating good 
generalization and accuracy when estimating 
structural properties of cantilevered beams.  
Similar results were found for the ANN used to 
estimate the inertial properties of the beam model. 

e) The ANN estimates of the stiffness and 
inertial properties are compared against the target 
vectors within the relevant testing data sets, and 
the relative error is calculated. 

f) The ANN and all their associated 
characteristics are stored for future analysis. 

 
SIMULATED EVALUATIVE EXAMPLE 

In order to illustrate the power and robustness 
of the proposed parameter estimation technique, a 
simulated example is shown. The model of the 
aircraft beam is depicted in Figure 1. The beam 
model is discretised with four Hermitian beam 
elements, and has one end clamped (no translation 
or rotation) and the other free to simulate 
cantilevering. It has a total mass of 287.75 kg and 
its natural frequencies are listed in Table 1 below.  
For clarity and simplicity, the mode shape data 
for the beam, comprising of nodal deflections and 
rotations at each node is not shown. 

In order to estimate the bending stiffness 
distribution for the beam model, the model is 
assumed to take up a deflected shape shown in 
Table 2, when subjected to the loading conditions 
outlined in Table 2. These correspond to the nodal 
loads and deformations for the beam model, and 
form the basis of the input to the first ANN, 
which is used to estimate the bending stiffness 
distribution for the beam model. 

The loading and deformation data is shown to 
the ANN used to model the inverse Hooke’s Law 
relationship for the beam, upon which the ANN 
estimates the bending stiffness of the beam, the 
results of which are listed in Table 3 below. 

Now the stiffness distribution of the beam and 
its total mass are shown to the second ANN, 
which is used to estimate the inertial distribution 
for the beam model, by modeling the inverse 
relationship existing between eigenvalues of the 
beam and its structural properties. The results for 
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the ANN used to estimate the inertial distribution 
of the beam are listed below in Table 4. 

Finally, to further test the robustness of the 
proposed method and validity of results, the first 
four natural frequencies of the beam model are 
calculated from the ANN estimates of the 
structural properties. These are then compared 
with the actual first four natural frequencies of the 
beam model to establish the performance of the 
proposed parameter estimation technique. The 
results are shown in Table 5. 
  
Table 1. Natural frequencies of the beam model. 

 

Mode  Frequency (Hz) 
1 16.41 
2 79.62 
3 201.87 
4 388.89 

 
Table 2. Loading and deformation characteristics. 

 

Location 
(m) 

F 
(N) 

M 
(Nm) 

v 
(m) 

v’ 
(rad) 

0 640 -1170 0.0 0.0000 
1.25 540 390 2.2 0.0039 
2.5 -1070 740 11.6 0.0119 

3.75 -1610 440 33.4 0.0232 
5 1500 120 67.6 0.0296 

 
Table 3. Bending stiffness estimation results. 

 

Target 
 (Nm2) 

Estimate 
 (Nm2) 

Error 
(%) 

500,000 500,760 -0.15 
360,000 360,540 -0.15 
260,000 261,360 -0.52 
210,000 209,180 0.39 

 
Table 4. Mass estimation results. 

 

Target (kg) Estimate (kg) Error (%) 
84.2 89.58 -6.39 
63.9 65.27 -2.14 

49.80 48.25 3.12 
32.3 29.99 7.16 

 
Table 5. Accuracy of ANN at estimating beam 

structural properties. 
 

Target (Hz) Estimate (Hz) Error (%) 
16.4058 15.5049 5.49 
79.6216 73.6173 7.54 
201.8719 192.6780 4.55 
388.8942 375.2358 3.51 

 

DISCUSSION 
It can be seen that upon review of the results 

presented, the estimated beam parameters 
represent a beam that closely resembles the real 
physical beam, with regards to its modal 
characteristics. Each ANN was able to accurately 
estimate the properties of the beam model, which 
in turn led to very accurate estimates of the first 
four natural frequencies of the beam model. 
 
Advantages 

The power of the proposed parameter 
estimation method lies in its ability to accurately 
model the generally highly non-linear 
relationships that are inherent in such structural 
and dynamic analyses. Hence the proposed 
parameter estimation technique is not limited to 
linear static and dynamic systems, greatly 
enhancing the method’s generality and 
applicability. The input-output mapping 
capability of ANNs bypasses the need to 
formulate and work with any highly coupled and 
non-linear Partial Differential Equations (PDEs) 
relating the static and dynamic response of the 
beam to its structural parameters. This greatly 
facilitates the identification of the required 
structural parameters for the beam, since highly 
coupled non-linear PDEs (in general) have no 
closed form solution and are extremely difficult to 
solve even numerically. It is indeed the task of 
each ANN to approximate such equations, which 
they inherently do in an extremely efficient and 
accurate manner by learning how the static and 
dynamic response of the beam relates to the 
structural parameters of the beam during the 
training process. 
 
Disadvantages 

The main limitation of the proposed parameter 
estimation method is its heavy reliance on the 
existence of a significant amount of mechanical 
data (experimental or numerical) pertaining to the 
type of structure to be identified. The response of 
the beam structure to some known static loading 
regime, as well as the free vibratory 
characteristics of the structure must be known in 
advance. This data must be also be converted 
such that it suitable for use with a simple FE 
model, which depending on the initial form of the 
data, may require significant post-processing. 

An additional limitation of the proposed 
parameter estimation method is the use of 
relatively few beam finite elements in the beam 
model to represent the aircraft wing. It is well 
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known that by increasing the number of elements 
used to model the beam, the accuracy of results 
obtained from the finite element analysis will (to 
a point) increase, particularly for dynamic 
analyses. In this case, a small number of elements 
were used in order to strike a compromise 
between computational accuracy and efficient 
implementation of the ANNs. Using more beam 
elements in the method will require more training 
and testing data, more hidden layer neurons and 
longer training times.  

Most important however, is the increased 
computational expense (longer CPU time and 
increased memory requirement) that accompanies 
an increase in the number of beam elements used 
to represent the real beam. For greater than four 
beam elements, the computational expense of the 
method becomes overwhelming, while the 
resulting structural parameter estimates become 
less accurate, as compared to the four-element 
beam representation of the physical structure. 
Hence the use of four Hermitian beam elements in 
the beam model was identified as providing the 
most accurate structural parameter estimates for a 
modest computational cost. 

Similarly, since the task at hand was to 
determine the structural parameters of the beam 
from a relatively small amount of data regarding 
its load/deformation and modal characteristics, 
the simple beam model used in the parameter 
identification procedure may not be totally 
representative of the physical structure. Hence the 
results achieved must be considered light of the 
numerous assumptions made regarding the 
loading regime, boundary conditions and 
geometry of the aircraft wing. 

It is therefore apparent that the proposed 
parameter estimation method can be improved in 
many ways from the above discussion. Further 
sophistication of the beam model accompanied 
with more physical data for the real aircraft wing 
will lead to more accurate and realistic results.  
Further post processing of current available real 
data may lead to an increase in useful data the 
proposed estimation technique can employ. 
 
CONCLUSIONS 

The inertial and bending stiffness distributions 
of a cantilevered finite element planar beam were 
accurately estimated using the proposed hybrid 
FEM-ANN parameter estimation technique. This 
simple beam model is capable of small 
deflections and rotations and is treated as a 
simplified representation of an aircraft wing. The 

stiffness distribution is estimated from static 
load/deformation considerations, while the 
inertial distribution is estimated from the modal 
characteristics of the beam model. The results 
from the implementation of this proposed 
parameter estimation technique show that the 
estimated parameters produce a beam that has 
modal characteristics that closely resemble those 
of the real physical beam. The proposed 
parameter estimation method showed proficiency 
at modeling the highly non-linear relationships 
between input parameters and desired outputs. 
However it is anticipated that further refinement 
of the beam model will eventually lead to a model 
that is more representative of the real structure, 
for which more accurate results may be obtained. 
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